R-datatypes-and-syntax

August 9, 2018

1 R workshop - types and syntax

1.1

Dots in identifier names are just part of the identifier. They are not scope operators. They
are not operators at all. They are just a legal character to use in the names of things.

seq_along(x) rough equivalent of enumerate

typeof()

class()

Resources

aRrgh
Hyperpolyglot: Matlab, R, Python
Advanced R - by Hadley Wickham

— “According to Wickham’s”tidy" approach, each variable should be a column, each ob-
servation should be a row, and each type of observational unit should be a table."

The R Inferno - “If you are using R and you think you're in hell, this is a map for you”

2 Data types

2.1

Gl D=

Five Main Data Types in R

Atomic vector
Matrix

Array

List
Dataframe

Everything in R is referred to as an object.

All data in R consists of a header of metadata - the object’s attributes - and the data structure
itself.

The fundamental data structure in R is the vector, which is essentially a one-dimensional
array with attributes. Even the primitive data types in R are vectors. For example, 2 is a
single-element vector.

To reference a single vector element you use v[[i]] .

1

http://arrgh.tim-smith.us/atomic.html
http://hyperpolyglot.org/numerical-analysis
https://adv-r.hadley.nz/
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf

¢ To reference a sub vector you use vl[i].

¢ For a vector v[i] and v[[i]] are almost the same thing as primitive data types are vectors.

¢ All arithmetic in R is vector-oriented.

¢ If a vector doesn’t have enough elements in a vector expression, its elements are reused.

¢ Attributes can be used to change the way data structures are used by the system.

¢ The dim attribute can be used to interpret a one dimensional vector as an n dimensional
array.

* A matrix is a 2 x 2 array.

* A one-dimensional vector is not the same as a one-dimensional array because it lacks a dim
attribute.

3 vector: a 1-D array with homogenous datatype

¢ “atomic vector” - the simplest R data type.
¢ Linear vectors of a single primitive type

numeric vector - integer literals are suffixed by L
character vector
logical - TRUE, FALSE, NA means “not available”

+ aRrgh: “Do not use T and F for TRUE and FALSE. You will see people doing it but
they’re not your friend; T and F are just variables with default values. Set T <- F
and source their code and laugh as it burns.”

complex

¢ Extend the vector by assigning past the end of a vector

3.1 “Combine” Functions

¢ ¢() - combine into a vector
¢ cbind() combine objects as columns
¢ rbind() - combine objects as rows

In [1]: a<-c(4,5,1,3,4,5)
In [2]: class(a)
‘numeric’
In [3]: a<-c(4,5,'asfd',1,3,4,5)
In [4]: class(a)
‘character’
In [5]: a
1.7472.’5" 3. ’asfd” 4.1’ 5.’3" 6.’4" 7.5’

In [28]: attributes(a)

NULL

In

In

In

In

In

In

In

In

[8]: dim(cbind(2,3, 4,5,6))

1.12.5

[9]: class(cbind(2,3, 4,5,6))

‘matrix’

[59]: length("hello") # WIF?? a character atomic wvector with length 1
1

[60]: nchar('hello')

5

matrix: 2-D array with optional row/column names
[30]: y<-matrix(1:20, nrow=5,ncol=4)

[31]: cells <- c(1,26,24,68)
rnames <- c("R1", "R2")
cnames <- c("C1", "C2")
mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE,
dimnames=1list(rnames, cnames))

[32] : mymatrix

[C1 2

R1 |1 26
R2 |24 68

[33]: attributes(mymatrix)

$dim 1.22.2

$dimnames 1. (a) 'R1’ (b) 'R2’

2. (a)'Cl’ (b) 'C2’

4.1 Reshape a matrix by assigning to dim

In

In

[36]: x<-c(1,2,3,4)
dim(x)<- ¢(2,2)

[37]: x

1 3
2 4

5 array 3+-D array

see help(array)
In [44]: x<- array(0,c(2,3,4))
In [45]: x

1.02.03.04.05.06.07.08.09.010.011.012.013.014.015.016.017.018.019. 0 20. 0
21.022.023.024.0

In [49]: class(attributes(x))

"list’

6 List: an ordered collection of objects

In []: w <~ list(name="Fred", mynumbers=a, mymatrix=y, age=5.3)
In []: as.matrix(w)
In []: cbind(w, 'hello')

In [50]: = c(2, 3, 5)
= c(”aa“, "bb", "CC", “dd", ||eeu)
c(TRUE, FALSE, TRUE, FALSE, FALSE)

= list(n, s, b, 3) # = contains copies of n, s, b

X o wn B
I

6.1 List Slicing with single bracket
In [11]: x[2]
1. (a) ’aa’ (b) 'bb’ (c) ‘cc’ (d) ’dd’ () "ee’
In [12]: x[2:3]
1. (a) ‘aa’ (b) 'bb’ (c) cc’ (d) ‘dd’ (e) ee’
2. (a) TRUE (b) FALSE (c) TRUE (d) FALSE (e) FALSE

6.2 List member reference using double bracket [[]]
In [15]: x[[2]1[4] <- "ppppp"
In [16]: x
1. (a)2()3(c)5
2. (a) "aa’ (b) 'bb’ (c) cc’ (d) ‘ppppp’ (¢) ‘ee’
3. (a) TRUE (b) FALSE (c) TRUE (d) FALSE (e) FALSE
4.3
In [20]: x[2][4]
1. NULL

6.3

Subsetting

[- when applied to a list, always returns a list
[[- only returns a single value

— use to pull pieces out of a list
— use when the var name is stored in a variable

$ - shorthand for [[combined with character subsetting

— use it for partial matching

Integer vs Logical Subsetting

positive integers - return elements at specified positions
negative integers omit elements at the specified positions
logical vectors get you the elements where TRUE

Simplifying vs. preserving: Comparing “[” and “[[”
Atomic vector- “[” keeps names, whereas “[[” does not:

List - return the object inside the list, not a single element

factor - drop any unused levels

matrix or array - if any of the dimensions has length 1, drop that dimension

data frame - if output is a single column, return a vector and not a data frame

In [1]: nx <- c(Abc = 123, pi = pi)

nx[1] ; nx["pi"]
nx[[1]] ; nx[["pi"]]

Abc: 123

pi: 3.14159265358979
123
3.14159265358979

In [64]: class(nx[1])

"numeric’

In [65]: typeof(nx[1])

‘"double’

In [67]: attributes(nx[1])

$names = "Abc’

In [68]: class(nx[[1]])

"numeric’

In [69]: typeof(nx[[1]])

‘"double’
In [70]: attributes(nx[[1]])

NULL

6.4 str() function is like glimpse

In [52]: str(x)

List of 4
$: num [1:3] 2 3 5
$: chr [1:5] "aa" "bb" "cc" "dd" ...
$: logi [1:5] TRUE FALSE TRUE FALSE FALSE
$: num 3

'NULL

6.5 wunlist() flattens list into a vector
In [56]: unlist(x)

1.7272.73’3.’5" 4. 7aa’ 5. 'bb’ 6. ’cc’ 7. ’dd’ 8. ’ee’ 9. "TRUE’ 10. '"FALSE’ 11. 'TRUE’ 12. 'FALSE’
13. 'FALSE’ 14.'3’

6.6 Extraction operator

¢ The $ allows you extract elements by name from a named list
¢ The main difference is that $ does not allow computed indices, whereas [[does.
¢ see ?Extract

7 data.frame - lists of columns

8 Attributes - Object Metadata

¢ names, dimensions, dimnames, classes, time series attributes ## Get and set attributes with
attributes() and attr()

attributes() function returns a list

length(): nrow() ncol() for matrices, dim for arrays()

names(): rownames() colnames(), dimnames()
In [25]: attr(list, 'names')

NULL

9 Casting

* as.integer()
¢ as.character()
¢ as.numeric()

10 Formula data Type

¢ express relationship between variables
¢ typeof = language, class = formula

¢ Captures an unevaluated expression

— The data values that have been assigned to the symbols in the formula are not accessed
when the formula itself is created

- “capture the meaning of this code without evaluating it right away.”

— Captures the context or environment in which the expression was created. Captures the
values of variables without evaluating them so they can be interpreted by the function

¢ Characterized by the tilde operator

— two-sided formula

+ left hand side of tilde is dependent variable and independent variables on the right
hand side
+ one-sided formula has no left side
— check sidedness using length()
— access elements of formula using [[]] operator for indices 1, 2, and 3 ## Symbols ###

Operators built into R
¢ - =« for using multiple indepent variables
e -« forignoring variables

e : - for inteaction

e -« for crossing

%in% - for nesting

" - for limit crossing to the specified degree

I() - the “as-is” operator - “inhibit the interpretation of operators such as”+“,”-*,”*" and “*”
as formula operators, so they are used as arithmetical operators"

* . operator - everything else, all the rest of the variables in the matrix/data.frame ### Addi-
tional operators/functionality provided by 3rd party packages

Multi-response formulas

10.1 Inspecting Formiulas in R

* terms ()
* all.vars()
* update(y ~ x1 + x2, ~ . +x3) . #y ~xl + x2 + x3

11 Magrittr pipes

°* %>%
L4 O/o$0/o
¢ . placeholder

12 foreach

¢ A Guide to parallelism in R

12.1 foreach + %do%

* equivalent to lapply
¢ nested foreach’s with %:%

12.1.1 Return lists

¢ foreach(i=1:3) %do% sqrt(i)

foreach(a=1:3, b=rep(10, 3)) %do% (a + b)

Can use parens for predicate #H Return things other than lists using .combine arg
.combine="c’ makes vector

.combine="cbind” makes matrix: Matrix foreach(i=1:4, .combine="cbind”) %do% rnorm(4)

12.2 foreach + %dopar%

tell children which packages to require using .packages arg
Or better to be explicit and use :: scoping like dplyr::count

12.3 List comprehensions - allows you to add an if clause

¢ foreach(a=irnorm(1, count=10), .combine="c") %:% when(a >= 0) %do% sqrt(a)

13 doParallel

13.1 Ex. 1

cl <- parallel::makeForkCluster(2)

doParallel: :registerDoParallel(cl)

foreach(i = 1:3, .combine = 'c') Y%dopar’ {
sqrt (i)

}

parallel::stopCluster(cl)

https://privefl.github.io/blog/a-guide-to-parallelism-in-r/

13.2 Ex. 2: Using doParallel::parLapply

library(doParallel)

no_cores <- detectCores() - 1

registerDoParallel (cores=no_cores)

cl <- makeCluster(no_cores, type="FORK")

result <- parLapply(cl, 10:10000, getPrimeNumbers)
stopCluster(cl)

14 Dplyr do()

¢ always returns a dataframe

¢ always needs specification of . placeholder

¢ use with group_by/()

¢ can extract out of . placeholder, i.e., .$varname

	R workshop - types and syntax
	Resources

	Data types
	Five Main Data Types in R

	vector: a 1-D array with homogenous datatype
	``Combine'' Functions

	matrix: 2-D array with optional row/column names
	Reshape a matrix by assigning to dim

	array 3+-D array
	List: an ordered collection of objects
	List Slicing with single bracket
	List member reference using double bracket [[]]
	Subsetting
	Integer vs Logical Subsetting
	Simplifying vs. preserving: Comparing ``['' and ``[[''

	str() function is like glimpse
	unlist() flattens list into a vector
	Extraction operator

	data.frame - lists of columns
	Attributes - Object Metadata
	Casting
	Formula data Type
	Inspecting Formiulas in R

	Magrittr pipes
	foreach
	foreach + %do%
	Return lists

	foreach + %dopar%
	List comprehensions - allows you to add an if clause

	doParallel
	Ex. 1
	Ex. 2: Using doParallel::parLapply

	Dplyr do()

